DPP - 1 \& 2 (Gravitation)

Video Solution on Website :-

https://physicsaholics.com/home/courseDetails/100

Video Solution on YouTube:-

https://youtu.be/iqlIbHGVv01

Written Solution on Website:-

Q 1. Three particles of equal mass m are situated at the vertices of an equilateral triangle of side I. What should be the velocity of each particle, so that they move on a circular path without changing I-
(a) $\sqrt{\frac{G M}{2 \ell}}$
(b) $\sqrt{\frac{G M}{\ell}}$
(c) $\sqrt{\frac{2 G M}{\ell}}$
(d) $\sqrt{\frac{G M}{3 \ell}}$

Q 2. A spherical shell is cut into two pieces along a chord as shown in figure. If I_{1} and I_{2} are gravitational field strength at P due to upper part and lowerpart respectively, then
(a) $I_{1}>I_{2}$
(b) $I_{1}<I_{2}$
(c) $I_{1}=I_{2}=0$
(d) $I_{1}=I_{2} \neq 0$

Q 3. The figure represents a solid uniform sphere of mass M and radius R. A spherical cavity of radius r is at a distance a from the center of the sphere. The gravitational field inside the cavity is

(a) non-uniform
(b) towards the center of the cavity
(c) directly proportional to a
(d) All of these

Q 4. Inside a uniform sphere of density ρ there is a spherical cavity whose center is at a distance l from the center of the sphere. Find the strength of the gravitational field inside the cavity.
(a) $E=-\frac{2}{3} \pi G \rho l$
(b) $E=-\frac{4}{3} \pi G \rho l$
(c) $E=-\frac{4}{3} \pi^{2} G \rho l$
(d) $E=-\frac{4}{3} \pi G \rho^{2} l^{2}$

Q 5. A straight rod of length l extends from $x=a$ to $x=L+a$. Find the gravitational force exerts on a point mass m at $\mathrm{x}=0$ is (if the linear density of $\operatorname{rod} \mu=A+B x^{2}$)
(a) $\operatorname{Gm}\left[\frac{A}{a}+B L\right]$
(b) $G m\left[A\left(\frac{1}{a}-\frac{1}{a+L}\right)+B L\right]$
(c) $G m\left[B L+\frac{A}{a+L}\right]$
(d) $G m\left[B L-\frac{A}{a}\right]$

Q 6. The gravitational field in a region is given by $(2 \hat{\imath}+2 \hat{\jmath}) \mathrm{N} / \mathrm{kg}$. What is the work done by an external agent to slowly shift a particle of mass 10 kg from the point $(0,0)$ to a point $(5 \mathrm{~m}$, 4m) ?
(a) 180 J
(b) -180 J
(c) 90 J
(d) -90 J

Q 7. A small body of superdense material, whose mass twice the mass of the earth but whose size is very small compared to the size of the earth, starts from rest at a height $\mathrm{H} \ll \mathrm{R}$ above the earth's surface, and reaches the earth's surface in time t. Then t is equal to-
(a) $\sqrt{2 H / g}$
(b) $\sqrt{H / g}$
(c) $\sqrt{2 H / 3 g}$
(d) $\sqrt{4 H / 3 g}$

Q 8. Two concentric spherical shells have masses $m 1$ and $m 2$ and radii $r 1$ and $r 2$. Then-

(a) Outer shell will have no contribution in gravitational field at point P
(b) Force on P is directed towards O
(c) Force on P is $\frac{G m_{1} m_{2}}{r^{2}}$
(d) Force on P is $\frac{G m_{1} m_{3}}{r^{2}}$

Q 9. A particle of mass m is placed at centre of uniform ring of mass M and radius R. Mass m is slightly displaced along axis and released. If ring is also free to move, angular frequency of shm is
(a) $\sqrt{\frac{G(M+m)}{R^{3}}}$
(c) $\sqrt{\frac{G M(M+m)}{m R^{3}}}$
(b) $\sqrt{\frac{G(M+m)}{2 R^{3}}}$
(d) $\sqrt{\frac{G m(M+m)}{M R^{3}}}$

Q 10. Gravitational field at surfave of earth is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ and at height h it is $9.6 \mathrm{~m} / \mathrm{sec}^{2}$.Gravitational field at depth h from ground is
(a) $9.6 \mathrm{~m} / \mathrm{sec}^{2}$
(b) $9.7 \mathrm{~m} / \mathrm{sec}^{2}$
(c) $9.4 \mathrm{~m} / \mathrm{sec}^{2}$
(d) $10 \mathrm{~m} / \mathrm{sec}^{2}$

Q 11. A sphere of mass M and radius R_{2} has a concentric cavity of radius R_{1} as shown in figure. The force F exerted by the sphere on a particle of mass in located at a distance r from the centre of sphere varies as $(0 \leq r \leq \infty)$:

(a)

(c)

(b)

(d)

Q 12. The Earth may be regarded as a spherically shaped uniform core of density l_{1} and radius $R / 2$ surrounded by a uniform shell of thickness $R / 2$ and density l_{2}. Find the ratio of $\frac{\rho_{1}}{\rho_{2}}$ if the value of acceleration due to gravity is the same at surface as at depth $R / 2$ from the surface
(a) $2 / 1$
(b) $5 / 3$
(c) $7 / 4$
(d) $7 / 3$

Q 13. A small body of mass m is projected with a vetocity just sufficient to make it reach from the surface of a planet (of radius $2 R$ and mass $3 M$) to the surface of another planet (of radius R and mass M). The distance between the centers of the two spherical planets is $6 R$. Find distance of small body from centre of bigger planet when it acquires its minimum speed
(a) $2 R[3-\sqrt{3}]$
(b) $3 R[2-\sqrt{3}]$
(c) $2 R[2-\sqrt{3}]$
(d) $3 R[3-\sqrt{3}]$

Q 14. There is a smooth tunnel along a chord of earth. Mass of earth is M and its radius is R. Length of tunnel is R/2. A particle is releases in tunnel from surface of earth(one end of tunnel. Velocity of particle at centre of tunnel is (assuming particle is just fitted in tunnel)
(a) $\frac{1}{2} \sqrt{\frac{G M}{R}}$
(b) $\frac{1}{4} \sqrt{\frac{G M}{R}}$
(c) $\frac{1}{3} \sqrt{\frac{G M}{R D}}$
(d) $\frac{1}{5} \sqrt{\frac{G M}{R}}$

Q 15 A uniform spherical shell is devided into two hemispheres as shown in figure. P is a point at deviding surface (not at centre of sphere). Gravitational field at P due to lower hemisphere have direction along
(a) a
(b) b
(c) c
(d) d

